Prior to disassembly solenoids should be marked with a letter or number for proper reassembly.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EDS 1</td>
<td>A Clutch</td>
</tr>
<tr>
<td>2</td>
<td>EDS 2</td>
<td>B Clutch</td>
</tr>
<tr>
<td>3</td>
<td>EDS 3</td>
<td>C Clutch</td>
</tr>
<tr>
<td>4</td>
<td>EDS 5</td>
<td>Line Pressure</td>
</tr>
<tr>
<td>5</td>
<td>EDS 4</td>
<td>D/E Clutches</td>
</tr>
<tr>
<td>6</td>
<td>MV 1</td>
<td>D/E Clutch ON/OFF</td>
</tr>
<tr>
<td>7</td>
<td>EDS 6</td>
<td>TCC</td>
</tr>
</tbody>
</table>

EDS 1 thru EDS 6 are Pressure Control Solenoids. EDS 1, 3 & 6 deliver low pressure at low current. EDS 2, 4 & 5 deliver high pressure at low current. MV1 allows pressure to either the D or E clutch.
Clutch Application Chart

<table>
<thead>
<tr>
<th>Gear</th>
<th>Forward "A"</th>
<th>Direct "B"</th>
<th>Intermediate "C"</th>
<th>Low/Reverse "D"</th>
<th>Overdrive "E"</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applied</td>
<td>Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Applied</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td>Applied</td>
</tr>
<tr>
<td>5</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td>Applied</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Applied</td>
<td></td>
<td>Applied</td>
</tr>
</tbody>
</table>

Air Test Locations

- **A Clutch**
- **E Clutch**
- **D2 Reaction Piston**
- **D1 Apply Piston**
- **B Clutch**
- **C Clutch**
Lineartronic Gen 1
Valve Body Information

Subaru CVT Gen 1 Solenoid Info and Identification

- **Secondary pressure solenoid**
 - 5-7 Ohm’s red wire

- **Forward & Reverse**
 - 4-6 Ohm’s blue, white wires

- **Primary-up**
 - 10-13.5 Ohm’s gray, blue wire

- **Primary-down**
 - 10-13.5 Ohm’s gray, blue wire

- **All Wheel Drive Transfer Clutch solenoid**
 - 2-4.5 Ohm’s gray, orange wires

- **Lock-up duty**
 - 10-13.5 Ohm’s gray, light green wires

- **Lock-up on/off**
 - 15-17 Ohm’s yellow wire
3 Filter all spring in first

A spring in first .392 FL .222 OD .031 WD
B spring in first .333 FL .204 OD .015 WD
C spring in first .392 FL .222 OD .031 WD
Subaru CVT Gen 1 upper valve body
Spring sizes shown above valve. (FL) Free length (OD) outside diameter - (W) wire diameter

1. Forward/Reverse control
2. TCC solenoid pilot
3. TCC control
4. Torque converter/lube pilot
5. Ratio switch
6. Ratio down control
7. AWD control
8. Forward/revers limit
Upper Subaru CVT Gen 1 vacuum/wet air test locations

- TCC solenoid pilot
- Forward/reverse control
- Ratio down
- TCC control
- TCC lube
- Ratio switch
- AWD control
Subaru CVT Gen 1 lower valve body

Spring sizes (FL) free length, (OD) outside diameter, (WD) wire diameter

9. Secondary Regulation
10. Primary down limit
11. Lube check-ball
12. Primary up control
13. Solenoid regulator
14. TCC boost/regulator
15. Manaul valve
Lower Subaru CVT Gen 1 vacuum/wet air test locations

- Secondary regulator
- Primary down
- Primary up
- Lock-up regulator
- Solenoid regulator
- Lock-up boost
U660E, U660F, U760E, U760F
Erratic or Flaring 4-5 Shift
This concern may be caused by a worn clutch control valve and bore. Replacing these parts will take care of the problem.
ZF6HP26/6R60

Delayed or Harsh Forward Engagements

A delayed or harsh engagement in these transmissions may be caused by a worn clutch A control valve boost sleeve. Replacing this part may be needed in order to repair this concern.

Clutch A Control Boost valve and Sleeve
JF613E Left Axle Stub Shaft Removal

The left side axle stub shaft must be removed from the transmission before removing the transfer case. The left stub axle has an 8mm x 1.5mm hole bored into the end of the axle.

Using a slide hammer or puller, remove the axle from the transmission case. Any attempt to pry the transfer case from the transmission case may damage the mounting flanges.
U660E, U660F, U760E, U760F
TCC Apply and Release Concerns, TCC Slip Codes
A worn lock-up control boost valve and sleeve may cause these transmissions to overheat or show any of the listed concerns. Replacing these parts should repair the vehicle.
A4CF2
Accumulator Spring Locations

2nd, OD, Rev Large Spring = 2.570” x .826” x .131”
Springs have a yellow paint identifier

2nd Small Spring = 2.026” x .489” x .096”
Spring has a yellow paint identifier

UD Large Spring = 2.653” x .825” x .118”
Spring has a white paint identifier

UD Small Spring = 2.168” x .511” x .080”
Spring has a white paint identifier
A4CF2
Accumulator Spring Locations

[Diagram showing spring locations for Rev, 2nd, OD, and UD]