This manual has been developed by the Automatic Transmission Rebuilders Association (ATRA) Technical Department to be used by qualified transmission technicians in conjunction with ATRA’s technical seminars. Since the circumstances of its use are beyond ATRA’s control, ATRA assumes no liability for the use of such information or any damages incurred through its use and application. Nothing contained in this manual is to be considered contractual or providing some form of warranty on the part of ATRA. No part of this program should be construed as recommending any procedure which is contrary to any vehicle manufacturer’s recommendations. ATRA recommends only qualified transmission technicians perform the procedures in this manual.

This manual contains copyrighted material belonging to ATRA. No part of this manual may be reproduced or used in any form or by any means — graphic, electronic or mechanical, including photocopying, recording, electronic or information storage and retrieval — without express written permission from the ATRA Board of Directors.

Public exhibition or use of this material for group training or as part of a school curriculum, without express written permission from the ATRA Board of Directors is strictly forbidden.

ATRA and the ATRA logo are registered trademarks of the Automatic Transmission Rebuilders Association.

Portions of materials contained herein have been reprinted with permission of General Motors Corporation, Service Technology Group.

© 2002 ATRA, Inc. All Rights Reserved. Printed in USA.
AD
AD
Program Contents

General Motors ... 1
Ford ... 75
Saturn147
Chrysler .. .165
Mitsubishi197
Volkswagen229
Reference ... 253
Creating a Great Seminar...
For most of you, a technical seminar is maybe half-a-dozen or so hours of intense technical information... and then, as quickly as it begins, it’s over. But a lot of effort goes in ahead of time, researching, developing and designing a seminar, long before it’s ready to play your town. Long days... late hours... frayed nerves... all part of the process to put a clean, carefully-choreographed presentation in front of a discriminating audience.
The folks involved in developing this year’s seminar are the leaders in the transmission repair industry. With over 200 years of combined technical experience, they’ve poured their heart and soul into every page and slide in this program. Whether their contribution involved technical expertise or organizational skills, the culmination of their efforts was an extraordinary educational experience that we’re proud to call the ATRA 2002 Technical Seminar.
We hope your experience is as rewarding as it was for us to develop it.
On behalf of the entire ATRA Technical team and myself I would like you to sit back and enjoy the 2002 ATRA Technical Seminar.
It’s difficult enough getting the seminar book researched, written, pictured, edited, and printed let alone getting it out to the seminar attendees. This is where the ATRA Staff comes in.

Chief Executive Officer: Dennis Madden
Executive Director: Steve Gray
GEARS Publishing: Rodger Bland
GEARS Magazine: Frank Pasley
Jeanette Troub
Valerie Mitchell
Paul Morton

Seminar and Trade Show: Traci Mackey
Accounting: Jody Winternute
Nancy Skora
Amy Marsh

Bookstore: Mike Helmuth
Shaun Velasquez

Membership: Vanessa Metzner
Chris Klein
Julia Garcia
Robin Birdsong
Joanna Book
Jim Spitson

Without the ATRA team, it would be very hard to accomplish the task at hand. Please enjoy the seminar.

Lance Wiggins
ATRA, Technical Director
Ford

Contents

CD4E
Case Damage from Servo 77

4F27E
Manual Shaft Leak 78
Delayed or No Reverse 79

AX4S
Redesigned Park System 80
Rear Lube Tube Cracking 90
Service Case to Replace 92
Past Models
Accumulator Springs 94
3.8L Torque Converter Pilot 97
Bushing Wear
TSS Exciter Wheel Bent 98

4R44E / 5R55E
New Direct Drum 99
TCC Concerns and How to Test 100
TCC Solenoid 102
Torque Converter 103
Separator Plate Feed 104
Stator Support Seal 105
Pump 106
Valve Body 108
Case 112

5R44E / 5R55E
New Upgrades for 2001 114
Stall and Shift Speed Charts 115

5R44E/55E, 5R55N/55W
Shift Concerns With Adaptive 117
Strategy

All Vehicles
P0603, P0605 119

4R70W
Case Changes 120
Valve Body Lower Separator 121
Plate Changes
Valve Body Separator Plate 122
Changes

AODE / 4R70W
Neutrals While Taking Off 126
Valve Body 127
Electrical Components 128
Case Warping 129
Neutrals on the 3-4 Shift 130

E4OD / 4R100
Separator Plate and Valve 132
Body Matching

4R100
#8 Trust Washer Missing 133
Squawking Noise in Reverse 135
Solenoid Pack Update 136
Rattle Noise From Torque 138
Converter Area
Shift Solenoid Failures 142

© 2002 ATRA. All Rights Reserved. Printed in U.S.A.
Case Damage from Servo Blowout

A case change was made to increase durability of the Intermediate/Overdrive servo. The new case has a wide groove and must have the correct snap ring installed.

New snap ring 0.079” diameter
4F27E
Transmission Manual Shaft Leak

Common Cause: Manual shaft O-ring leaking, causing fluid to leak into the TRS. During early production a number of transaxles were assembled with a manual shaft O-ring that’s diameter was too large. During installation these O-rings were cut or pinched causing them to leak.

Repair: Install new, smaller diameter O-ring-part # XS4Z-7B498-AB.
4F27E
Delay or No Reverse

Concern: Delayed or no reverse all other gears normal.

Common Cause: High pressure due to pressure regulator valve wear causing reverse clutch drum to side load on the rear support.

Repair: Replace drum, support assembly and valve body.
AX4S/AX4N

Redesigned Park System

2000 Taurus with Build Dates After 8/1999

Parking System

1999 Taurus, Sable and Windstar vehicles with AX4S transaxles built August 1999 and beyond and all 2000 Taurus, Sable and Windstar vehicles with AX4S or AX4N transaxles and 2000 Continentals built 10/1999 or later have a redesigned park system.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>YF1Z-7A441-AA</td>
<td>Parking pawl</td>
<td></td>
</tr>
<tr>
<td>YF1Z-7D070-A</td>
<td>Park spring</td>
<td></td>
</tr>
<tr>
<td>YF1Z-7D071-A</td>
<td>Park shaft</td>
<td></td>
</tr>
<tr>
<td>W706012-S300</td>
<td>Bolt</td>
<td></td>
</tr>
<tr>
<td>YF1Z-7G101-A</td>
<td>Plate</td>
<td></td>
</tr>
<tr>
<td>1F2Z-7D232-A</td>
<td>Rod</td>
<td>AX4S (only)</td>
</tr>
<tr>
<td>1F1Z-7D232-A</td>
<td>Rod</td>
<td>AX4N (only)</td>
</tr>
<tr>
<td>YF1Z-7A256-AA</td>
<td>Rod</td>
<td></td>
</tr>
<tr>
<td>YF1Z-7A115-A</td>
<td>Lever</td>
<td>Model Dependent</td>
</tr>
<tr>
<td>YF1Z-7E332-AA</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>YF1Z-7C493-A</td>
<td>Shaft</td>
<td></td>
</tr>
<tr>
<td>1F1Z-7005-AA</td>
<td>Case</td>
<td>Model Dependent</td>
</tr>
<tr>
<td>1F1Z-7005-BA</td>
<td>Case</td>
<td>Model Dependent</td>
</tr>
<tr>
<td>-7G188-</td>
<td>Cover</td>
<td>Model Dependent</td>
</tr>
<tr>
<td>YF1Z-7G303-A</td>
<td>Gasket</td>
<td></td>
</tr>
<tr>
<td>YF2Z-7A130-AA</td>
<td>Support</td>
<td>AX4S (only)</td>
</tr>
<tr>
<td>YF1Z-7A194-AA</td>
<td>Pan</td>
<td>AX4N (only)</td>
</tr>
<tr>
<td>YF1Z-7G084-A</td>
<td>Tube</td>
<td>AX4N (only)</td>
</tr>
<tr>
<td>N803202S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AX4S/AX4N

Redesigned Park System (continued)
2000 Taurus with Build Date After 8/1999

Old New

YF1Z-7D070-A

YF1Z-7A441-AA
AX4S/AX4N
Redesigned Park System (continued)
2000 Taurus with Build Date After 8/1999

Old

Both AX4S and AX4N

New

New

© 2002 ATRA. All Rights Reserved. Printed in U.S.A.
AX4S/AX4N

Redesigned Park System (continued)

2000 Taurus with Build Date After 8/1999

1F2Z-7D232-A
(AX4S)

1F1Z-7D232-A
(AX4N)

YF1Z-7C493-A
AX 4S/AX 4N
Redesigned Park System (continued)
2000 Taurus with Build Date After 8/1999

YF1Z-7E332-AA
New

YF1Z-7A256-AA
New

YF1Z-7A115-A
New
AX4S/AX4N
Redesigned Park System (continued)
2000 Taurus with Build Date After 8/1999

Lube Tube (AX4N only)
YF1Z-7G084-A

N803202S

Old

YF1Z-7A194-AA (AX4N)

New
AX4S/AX4N

Redesigned Park System (continued)
2000 Taurus with Build Date After 8/1999

Case Assembly

-7005-
(Model Dependent)
AX4S/AX4N
Redesigned Park System (continued)
2000 Taurus with Build Date After 8/1999

Channel Casting

7G188
(Model Dependant)
AX 4S/AX 4N
Redesigned Park System (continued)
2000 Taurus with Build Date After 8/1999

Note: Match channel plate and gasket to avoid reverse clutch oil lose.

YF1Z-7G303-A
YF2Z-7A130-AA
(AX4S)
AX4S/AX4N
Redesigned Park System (continued)
2000 Taurus with Build Date After 8/1999

Old

Redesigned plate uses an additional bolt.

New

The positions of the roll pins changed

Roll pin.

Bolt and Plate assembly.
AX4S

Rear Lube Tube Cracking

Cause: A loose fit of the tube to the case assembly allowed the tube to vibrate and move, causing it to crack at the stub area.

Repair: Replace with redesigned tube and rear bracket. FORD part number 1F1Z-7G353-AA.
AX4S

Rear Lube Tube Cracking

- New bracket support for the lube tube
- Area that cracks
AX 4S/AX 4N

Service Case to Replace Past Models

The case on 2000 and later units with the park upgrade will service past models as complete assemblies.
AX4S/AX4N
Service Case to Replace Past Models (continued)

AX4S 1991-1999 also needs plug for speed sensor

Replacement plug goes here

XF2Z-7H 398-AB
AX4S Accumulator Spring Changes

AX4S ACCUMULATOR SPRINGS

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>N-D ACCUMULATOR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL MODELS</td>
<td>E6DZ-7G300-A</td>
<td>BLUE</td>
</tr>
<tr>
<td>98-02</td>
<td>F8DZ-7G300-BA</td>
<td>GREEN</td>
</tr>
</tbody>
</table>

AX4S ACCUMULATOR SPRINGS

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>3-4 ACCUMULATOR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-95</td>
<td>E9DZ-7G266-A</td>
<td>WHITE</td>
</tr>
<tr>
<td>95-97</td>
<td>F5DZ-7G266-A</td>
<td>YELLOW</td>
</tr>
<tr>
<td>98-02</td>
<td>F8DZ-7G266-AA</td>
<td>YELLOW</td>
</tr>
</tbody>
</table>

AX4S ACCUMULATOR SPRINGS

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>1-2 ACCUMULATOR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-95</td>
<td>E6DZ-7G267-A</td>
<td>BROWN</td>
</tr>
<tr>
<td>95-02</td>
<td>F58Z-7G326-A</td>
<td>PLAIN</td>
</tr>
</tbody>
</table>
AX4N
Accumulator Spring Changes

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>2-3 ACCUMULATOR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-02</td>
<td>F5DZ-7G285-A</td>
<td>LT BLUE</td>
</tr>
</tbody>
</table>

AX4N ACCUMULATOR SPRINGS

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>R ACCUMULATOR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-97</td>
<td>F5DZ-7E485-A</td>
<td>GREEN</td>
</tr>
<tr>
<td>98-02</td>
<td>F8OZ-7E485-BA</td>
<td>YELLOW (INNER)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>3-4 ACCUMULATOR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-02</td>
<td>F5DZ-7G266-A</td>
<td>BLUE</td>
</tr>
</tbody>
</table>

AX4N ACCUMULATOR SPRINGS

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>N-D ACCUMULATOR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL EXCEPT 94 TAURUS</td>
<td>F5OZ-7G300-A</td>
<td>GREEN (OUTER)</td>
</tr>
<tr>
<td>94 TAURUS/SABLE</td>
<td>F4DZ-7G300-A</td>
<td>PLAIN (OUTER)</td>
</tr>
<tr>
<td>ALL EXCEPT 94 TAURUS</td>
<td>F5OZ-7G301-A</td>
<td>BROWN</td>
</tr>
</tbody>
</table>
AX4S/AX4N Accumulator Spring Changes (continued)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>COLOR</th>
<th>O.D. DIAMETER</th>
<th>LENGTH</th>
<th>WIRE DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>E8DZ-7G358-A</td>
<td>PINK (Middle)</td>
<td>1.200"</td>
<td>1.460"</td>
<td>0.099"</td>
</tr>
<tr>
<td>E8DZ-7G326-A</td>
<td>PURPLE (Inner)</td>
<td>0.905"</td>
<td>1.620"</td>
<td>0.075"</td>
</tr>
<tr>
<td>E8DZ-7G267-A</td>
<td>BROWN (OUTER)</td>
<td>1.575"</td>
<td>1.435"</td>
<td>0.125"</td>
</tr>
<tr>
<td>F58Z-7G326-A</td>
<td>PLAIN</td>
<td>1.208"</td>
<td>1.480"</td>
<td>0.105"</td>
</tr>
</tbody>
</table>

AX4N ACCUMULATOR SPRING IDENTIFICATION

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>COLOR</th>
<th>OUTSIDE DIAMETER</th>
<th>LENGTH</th>
<th>WIRE DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5DZ-7G267-A</td>
<td>PLAIN</td>
<td>1.324"</td>
<td>1.540"</td>
<td>.112"</td>
</tr>
<tr>
<td>F6DZ-7G267-A</td>
<td>PURPLE (SHO ONLY)</td>
<td>1.510"</td>
<td>1.390"</td>
<td>.120"</td>
</tr>
<tr>
<td>F5DZ-7F285-A</td>
<td>ORANGE/BLUE</td>
<td>1.300"</td>
<td>1.225"</td>
<td>.110"</td>
</tr>
<tr>
<td>F5DZ-7G266-A</td>
<td>BLUE</td>
<td>1.312"</td>
<td>1.482"</td>
<td>.112"</td>
</tr>
<tr>
<td>F5DZ-7E485-A</td>
<td>GREEN</td>
<td>0.965"</td>
<td>1.405"</td>
<td>0.091"</td>
</tr>
<tr>
<td>F8OZ-7E485-BA</td>
<td>YELLOW</td>
<td>0.960"</td>
<td>1.405"</td>
<td>0.091"</td>
</tr>
<tr>
<td>F5OZ-7G300-A</td>
<td>GREEN (OUTER)</td>
<td>1.475"</td>
<td>1.218"</td>
<td>0.101"</td>
</tr>
<tr>
<td>F4DZ-7G300-A</td>
<td>PLAIN (OUTER)</td>
<td>1.369"</td>
<td>1.218"</td>
<td>0.091"</td>
</tr>
<tr>
<td>F5OZ-7G301-A</td>
<td>BROWN (INNER)</td>
<td>1.172"</td>
<td>1.218"</td>
<td>0.083"</td>
</tr>
</tbody>
</table>
AX4S

3.8L Torque Converter Pilot Bushing Wear

Concern: When a replacement transmission or engine is necessary make sure to visually check the torque converter pilot bushing in the crankshaft for excessive wear.

Note: All 3.8L require this bushing.

Cause: Pilot bushing in the crankshaft worn, allowing the torque converter to run off center.

Repair: Replace the bushing and check the run out.

New and *Used* wear measurements are provided in the diagram.
AX4S/AX4N
TSS Exciter Wheel Bent

Concern: Damage to the exciter ring on the driven sprocket, (primarily on 1996-1997 model years).

Common Cause: The exciter ring may cause the PCM to control line pressure higher than normal.

Repair: Straighten or replace sprocket.

NOTE: Measurement from the exciter ring to the tip of the sensor is .050”-.055”.
4R44E/5R55E
New Direct Drum

As of 1999 a new direct drum was available for the 4R44E/5R55E. This drum will interchange as an assembly. Do not MIX old parts and NEW parts! (Piston, Retainer, Etc.)

Old Drum
97GT-7D044-A1E/A2E/A2F

Match with Case numbers
97GT-7D014-GA/HA/KA/LA

Old drum is not indented and requires a smaller inside diameter bearing

New Drum
XL2P-7D044-AA/CB/DB

Match with Case numbers
XW4P-7F374-CA/DA/EA/FA

New drum is indented and requires a bigger inside diameter
4R44E/55E and 5R44E/55E

TCC Concerns
How to Test the system

The easiest way to test the TCC circuit is to know what’s happening when the computer is ready to apply the TCC. Once all parameters are met, and the computer is ready to apply the TCC, the TCC solenoid is energized by the computer. Hydraulically, the line pressure is supplied to the coast clutch regulator valve. The coast clutch regulator valve charges the TCC solenoid and now the TCC solenoid pulses the TCC regulator valve to apply the torque converter clutch. To determine whether or not the converter, solenoid or both are causing the problem simply energize the TCC in the stall on the lift, or stationary. This test is simply checking the integrity of the converter and the circuit.

If the engine Stalls: The converter is capable of locking-up and the valves definitely moved and the problem may be in the regulation of the valves and the performance of the PWM circuit.

If the engine doesn’t Stall: The first thing to check is the solenoid if the solenoid is working then the TCC charge has a leak in the system. This leak can be in a number of different areas.

Using your scan tool, locate the parameter that says TCC% and TCCAMACT or TCC RPM on your data screen. These parameters will give you a quick look at the system. TCC% is the amount of duty cycle the computer is commanding the TCC solenoid to pulse, usually this parameter runs between 90% and 100% on your scanner. TCCAMACT is the amount of slip RPM the computer is detecting.

GOOD Reading:

TCC % Varying between 90% and 100%
TCCAMACT Varying between 0-10 RPM

BAD Reading:

TCC % Varying between 90% and 100%
TCCAMCAT Varying higher then 10 RPM and as high as 200 RPM
4R44E/55E and 5R44E/55E

TCC Concerns (continued)

Torque converter concerns on 4R44E/4R55E/5R55E have been a constant concern. In recent years there have been a number of concerns related to torque converter apply as well as No cooler flow, Harsh TCC and Soft TCC engagement, No Lock-up or loss of TCC when hot. Diagnosing torque converter problems can be troublesome. The following pages have tips you can use to determine the fix.

Here are the common codes you will get:

<table>
<thead>
<tr>
<th>Codes</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>628:</td>
<td>Torque Converter Clutch Slip or Error</td>
</tr>
<tr>
<td>P0740:</td>
<td>Torque Converter Clutch System Problem</td>
</tr>
<tr>
<td>P0741:</td>
<td>Torque Converter Clutch System Performance or Stuck Off</td>
</tr>
<tr>
<td>P0742:</td>
<td>Torque Converter Clutch System Stuck Off</td>
</tr>
<tr>
<td>P0743:</td>
<td>Torque Converter Clutch System Electrical</td>
</tr>
<tr>
<td>P1740:</td>
<td>Torque Converter Clutch Malfunction</td>
</tr>
<tr>
<td>P1741:</td>
<td>Torque Converter Clutch Control Error</td>
</tr>
<tr>
<td>P1742:</td>
<td>Torque Converter Clutch Solenoid Failed On, MIL Lamp On</td>
</tr>
<tr>
<td>P1743:</td>
<td>Torque Converter Clutch Solenoid Failed On, TCIL Lamp ON</td>
</tr>
<tr>
<td>P1744:</td>
<td>Torque Converter Clutch Mechanical Noise or Stuck in Off Position</td>
</tr>
</tbody>
</table>
4R44E/55E and 5R44E/55E TCC Concerns (continued)

Damaged TCC Solenoid

Concern: A no TCC apply on 1995 through 1998 with a flashing overdrive light, DTC 628, P0741, P1740 or P1744.

Common Cause: TCC solenoid (there were certain TCC solenoid’s that were poorly designed and the result was the tip blowing out and the brackets were cracking.

Repair: Replace solenoid.

Note: *Make sure not to reuse lot numbers between 769 and 771, these solenoids are defective.*
4R44E/55E and 5R44E/55E

TCC Concerns (continued)

Torque Converter Clutch Failure

Slip codes are very common. Make sure to diagnose converter codes correctly before replacing converter.

Concern: No converter clutch apply.

Common Cause: Torque converter lining burnt or flaked off.

Repair: Replace converter.
Modify the Separator plate to increase cooler flow. Cooler flow should be a minimum of 1 quart in 20 seconds. Make sure line pressure is within specification, high line pressures can cause low cooler flow.

Concern: TCC slip, or insufficient cooler flow.

Common Cause: The separator plate may have the wrong size feed holes. The converter feed holes are normally between 0.032" and 0.048".

Repair: Drill the converter feed hole in the separator plate to 0.060" for increased cooler flow.
4R44E/55E and 5R44E/55E
TCC Concerns (continued)
Butt-cut Seal Damaged

Concern: Slip or no TCC apply.

Common Cause: Seal broken or stator shaft worn or cracked.

Repair: Replace seal and check stator support for shaft wear or cracking around the seal area. If crack is evident replace stator.

Check seal for damage.
4R44E/55E and 5R44E/55E

TCC Concerns (continued)

Inner Pump Gear Seal Damaged

Concern: TCC slip

Common Cause: Installing A4LD pump gears that don’t have an O-ring, or correct pump gear inner O-ring damaged or missing. This will allow converter charge oil to leak into the converter bushing lube or drain back passage creating low converter charge.

Repair: Install correct pump gears and O-ring. Inspect converter hub and lubricate prior to installation.

NOTE: Must have gear with o-ring.
Always inspect Pump assembly for damage, note any wear marks or warping and replace if necessary.
4R44E/55E and 5R44E/55E

TCC Concerns (continued)

Valve Body Damage

The valve body can cause many different TCC related problems. There are a number of valves involved:

- Torque Converter Regulator Valve
- Torque Converter Modulator Valve
- Coast Clutch Shift Valve
- Thermostatic Bypass Valve
- Converter Relief Valve

Anyone of these valves can cause a TCC failure.

Concern: Slip or No TCC apply.

Common Cause: Wear in the Valve Body.

Repair: Repair or Replace Valve Body.
Always check valve body surface for warping
4R44E/55E and 5R44E/55E

TCC Concerns (continued)

Valve Body Damage
4R44E/55E and 5R44E/55E
TCC Concerns (continued)
Valve Body Damage

Coast Clutch Regulator Valve and Bore
4R44E/55E and 5R44E/55E
TCC Concerns (continued)
Case and Bellhousing Warpage
4R44E/55E and 5R44E/55E

TCC Concerns (continued)

Case and Bellhousing Warpage

[Diagram showing case and bellhousing with labels: To Cooler, To Coast Clutch, Converter, Converter]
5R44E/ 5R55E
New Upgrades for 2001-On

The 5R44E is a new transmission that will replace the 4R44E. Some of the parts upgrades consist of:

- New Intermediate Shaft Speed (ISS) sensor for 5R44E/5R55E
- New Case, to accept the ISS Sensor
- New input shell trigger point for the ISS Sensor.

Note: New Input Shell may be use to service 97-On
Shift and Stall Speed chart for 2001

Shifts @ Vehicle Speed (MPH)*

<table>
<thead>
<tr>
<th>Position</th>
<th>OD Position, Shift</th>
<th>Vehicle Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed</td>
<td>5-4</td>
<td>34 to 50 mph</td>
</tr>
<tr>
<td></td>
<td>4-3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3-2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2-1</td>
<td>10 to 13 mph</td>
</tr>
</tbody>
</table>

Minimum

<table>
<thead>
<tr>
<th>Position</th>
<th>OD Position, Shift</th>
<th>Vehicle Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-2</td>
<td>10 to 22 mph</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>13 to 24 mph</td>
</tr>
<tr>
<td></td>
<td>3-4</td>
<td>18 to 28 mph</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>28 to 60 mph</td>
</tr>
<tr>
<td></td>
<td>5-4</td>
<td>25 to 36 mph</td>
</tr>
<tr>
<td></td>
<td>4-3</td>
<td>10 to 20 mph</td>
</tr>
<tr>
<td></td>
<td>3-2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2-1</td>
<td>9 to 12 mph</td>
</tr>
</tbody>
</table>

TP Voltage = 1.25V

<table>
<thead>
<tr>
<th>Position</th>
<th>OD Position, Shift</th>
<th>Vehicle Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-2</td>
<td>37 to 46 mph</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>55 to 69 mph</td>
</tr>
<tr>
<td></td>
<td>3-4</td>
<td>69 to 82 mph</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>95 to 116 mph</td>
</tr>
<tr>
<td></td>
<td>5-4</td>
<td>85 to 114 mph</td>
</tr>
<tr>
<td></td>
<td>4-3</td>
<td>64 to 78 mph</td>
</tr>
<tr>
<td></td>
<td>3-2</td>
<td>45 to 61 mph</td>
</tr>
<tr>
<td></td>
<td>2-1</td>
<td>30 to 37 mph</td>
</tr>
</tbody>
</table>

Stall Speed Specifications

<table>
<thead>
<tr>
<th>Trans.</th>
<th>Vehicle</th>
<th>Engine</th>
<th>RPM Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R44E</td>
<td>Ranger</td>
<td>2.3L</td>
<td>2621-3050</td>
</tr>
<tr>
<td></td>
<td>Ranger</td>
<td>3.0L</td>
<td>2833-3384</td>
</tr>
<tr>
<td>5R55E</td>
<td>Ranger</td>
<td>4.0L SOHC</td>
<td>2557-3032</td>
</tr>
<tr>
<td></td>
<td>Explorer Sport</td>
<td>4.0L SOHC</td>
<td>2557-3036</td>
</tr>
<tr>
<td></td>
<td>Explorer Sport Trac</td>
<td>4.0L SOHC</td>
<td>2557-3036</td>
</tr>
</tbody>
</table>

* Range covers all OEM axle ratios and tire sizes. Always drive vehicle safely according to traffic conditions and obey all traffic laws.
5R44E/ 5R55E Pressure Specification for 2001

<table>
<thead>
<tr>
<th>Trans.</th>
<th>Application</th>
<th>Range</th>
<th>Idle@ 1000 rpm Pressures, psi</th>
<th>WOT Stall Pressures, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EPC Line</td>
<td>EPC Line</td>
</tr>
<tr>
<td>5R44E</td>
<td>2.3L Ranger 4x2</td>
<td>R</td>
<td>40-50 145-190</td>
<td>112-134 282-350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>20-40 75-120</td>
<td>112-134 228-263</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OD, 2, 1</td>
<td>20-40 75-120</td>
<td>112-134 228-263</td>
</tr>
<tr>
<td>3.0L</td>
<td>Ranger</td>
<td>R</td>
<td>45-55 150-195</td>
<td>112-134 282-350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>20-40 75-120</td>
<td>112-134 228-263</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OD, 2, 1</td>
<td>20-40 75-120</td>
<td>112-134 228-263</td>
</tr>
<tr>
<td>5R55E</td>
<td>4.0L SOHC Ranger</td>
<td>R</td>
<td>65-75 215-235</td>
<td>112-134 282-350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>20-40 75-120</td>
<td>112-134 228-263</td>
</tr>
<tr>
<td></td>
<td>4.0L SOHC Explorer Sport</td>
<td>OD, 2, 1</td>
<td>35-50 110-145</td>
<td>112-134 228-263</td>
</tr>
<tr>
<td></td>
<td>4.0L SOHC Explorer Sport Trac</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adaptive shift strategy, although fairly new to Ford, has been around for quite sometime now. The new 2001 5R44E/55E and 5R55N/55W are equipped with the adaptive strategy and it is important to understand the conditions needed for proper shift timing. The Adaptive Strategy is also used for adjusting the pressure control system. When power is lost to the Powertrain Control Module (PCM) the transmission shifts are affected, and may cause damage if precautions are not taken.

The reasons for shift adaptive electronic pressure control strategy:

- Better control over shift events.
- Maintain high mileage durability.
- Reduce unit variation from vehicle to vehicle.
- Provide consistent shift feel over the life of the vehicle.

Reasons for loss of power to the PCM:

- Vehicle battery disconnected or battery drain.
- An updated calibration installed to the Powertrain Control Module.
- Keep Alive Power lost to the Powertrain Control Module while the battery is still connected. (Bad Relay, Fuse, Wiring, PCM)
Shift Concerns With Adaptive Shift Strategy (continued)

The inputs that directly affect the transmissions capability to shift correctly and maintain smooth shifting sequences are:

Inputs:
- Mass air flow sensor (MAF)
- Engine speed (RPM)
- Turbine speed (TSS)
- Intermediate speed (ISS)
- Vehicle speed/output speed (VSS/OSS)

Conditions needed to adapt:
- Calibrated minimum throttle level and minimum change in throttle.
- Calibrated operating temperature.
- Upshifts.
- Closed throttle, manual downshifts.
- Engagements.

Normal conditions for Adaptive Shift Control:
- New vehicle/transmission with abrupt shift feel or slip.
- Shifts only adapt at operating temperature.
- May take several shifts under same operating conditions to adapt.
- Information gets stored in Keep Alive Memory (KAM) power.
- Power loss to KAM, transmission shifts in its pre-adapted level.
- Adaptive process will, over time, fully update KAM.
- Depending on driving style, it may take longer to complete the adaptive strategy.
All Ford Vehicles

P0603 (KAM Test Code)
P0605 (RAM Test Code)

Any Ford with codes P0603 or P0605 may have an aftermarket chip installed on at or near the PCM.

- P0603 indicates **KEEP ALIVE MEMORY** at the PCM is or has been interrupted.
- P0605 indicates **RANDOM ACCESS MEMORY** at the PCM is or has been interrupted.

Check wiring for aftermarket installation or ask customer if they have had any performance modifications done to the vehicle.
4R70W
Case Changes and Updates
(Truck only)

In 2001, 4R70W cases changed for the truck lines only. These changes include:

- Overdrive Servo bleed hole "DELETED"
- Unique Valve body for trucks only
- New case WILL NOT service earlier models, due to calibration changes.
4R70W
Valve Body Lower Separator Plate/Gasket Changes

These holes were added in 1999 and on transmissions

Late
96-2002

Early
92-95

© 2002 ATRA. All Rights Reserved. Printed in U.S.A.
4R70W
Valve Body Separator Plate Changes (continued)

These are the orifice names you will see on the separator plate.

A = Forward Clutch Feed
AA = TCC Feed
AB = Rear Lube
AC = Converter Clutch Apply
AD = By-Pass Clutch control plunger
B = 2-3 Shift valve
C = 2-3 Accumulator
D = O/D Servo regulator
F = Low-Reverse Servo Release
G = Intermediate Clutch Feed
H = 3-4 Shift valve to O/D regulator valve
I = Reverse Clutch
K = Direct Clutch
L = O/D Servo Regulator Valve side
M = Main Regulator valve
P = SS1 Feed
R = SS2 Feed
S = Solenoid Main Feed
T = Intermediate Clutch from the 1-2 shift valve
U = B8 Intermediate Apply
VV = Converter Drain/Lube
W = Converter charge
Y = By-Pass Clutch control
4R70W/AODE
Valve Body Separator Plate Changes (continued)

Note: Dotted lines illustrate circuits in reinforcement plates.
4R 70W/AODE
Valve Body Separator Plate Changes (continued)
4R70W/AODE
Valve Body Separator Plate Changes (continued)

99-on
AO DE/4R 70W
Neutrals While Taking Off From a Stop

Concern: Typically described as during heavy acceleration from a stop the transmission neutralizes, but additional symptoms may be present. In 1st, 2nd or 3rd gear in the O/D position during heavy acceleration the transmission neutralizing may also accompany this concern.

Common Cause: The 3/4 shift valve strokes cutting off the forward clutch. Restricted solenoids being the most common concern are the focus of our attention, but keep in mind that it is the flooding of the solenoids that causes the neutralization so anything that can cause a solenoid to flood is also of concern.

Testing & Repair: Install a gauge on the forward clutch pressure tap. When the neutralization occurs, if the gauge reads at or near 0psi, replace the shift solenoids and inspect the solenoid pressure regulator valve and bore for wear.
AO
DE/4R 70W
Neutrals Taking Off From a Stop
(continued)

Valve Body Warping

Note: Measurements should not exceed more than .005” clearance.
Neutrals Taking Off From a Stop (continued)

Electrical Components

There is no direct command for a neutral condition with the manual valve in the drive position. However incorrect inputs to the processor may cause high pressure concerns that will in turn flood the shift solenoids circuit causing a neutral condition.
Neutrals Taking Off From a Stop (continued)

Case Warping

Note: FC = Forward Clutch
Concern: During a 3/4 shift or just accelerating in 4th the transmission neutralizes. No codes present and the correct commands are being sent to the transmission.

Common Cause: 2/3 shift valve end plug leaking. This leak causes the direct clutch to be cut off due to the amount of solenoid oil pressure required to keep both the 3/4 shift valve and the 2/3 shift valve in the stroked position. Because the 2/3 shift valve has only one area for solenoid pressure to pin the valve verses two for the 3/4 shift valve it is more likely to be susceptible to the leak.
4R70W

Neutrals on the 3-4 Shift (continued)

Testing & Repair: Install a pressure gauge on the direct clutch tap. When the transmission neutralizes if the gauge shows little or no pressure, then remove the 2/3 shift valve end plug and run a tubing cutter around the outside diameter to seal the leak.

NOTE: While performing this repair also check the 2/3 shift and solenoid pressure regulator valves and bores for wear.
Between 1989 and 2002 there have been a number of different changes in separator plates, gaskets and valve bodies. The chart indicates the relationship between separator plates and valve bodies.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>ENGINE</th>
<th>V/B</th>
<th>SEP PLATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>7.3/7.5/5.8</td>
<td>E9TZ-A E9TZ-B</td>
<td>E9TZ-A</td>
</tr>
<tr>
<td>1990-95</td>
<td>4.9/5.0/5.8/7.3/7.5</td>
<td>F0TZ-J F3TZ-G</td>
<td>F4TZ-A</td>
</tr>
<tr>
<td>1990-95</td>
<td>4.9/5.0/5.8/7.3/7.5</td>
<td>F5TZ-A F3TZ-G</td>
<td>F5TZ-A</td>
</tr>
<tr>
<td>1990-95</td>
<td>4.9/5.0/5.8/7.3/7.5</td>
<td>F6TZ-D F6TZ-A*</td>
<td>F6TZ-B*</td>
</tr>
<tr>
<td>1990-95</td>
<td>4.9/5.0/5.8/7.3/7.5</td>
<td>F6TZ-B F6TZ-A*</td>
<td>F5TZ-B*</td>
</tr>
<tr>
<td>1996</td>
<td>4.9/5.0/5.8/7.3/7.5</td>
<td>F6TZ-D F6TZ-A</td>
<td>F6TZ-B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F6TZ-C</td>
<td>F7TZ-AA</td>
</tr>
<tr>
<td>1997</td>
<td>6.8</td>
<td>F6TZ-C</td>
<td>F7UZ-AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F6TC-C</td>
<td>F8UZ-CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F6TC-C</td>
<td>F81Z-EA</td>
</tr>
<tr>
<td></td>
<td>4.2/4.6/5.4/7.3</td>
<td>F6TZ-C</td>
<td>F7TZ-AA</td>
</tr>
<tr>
<td>1998</td>
<td>6.8/7.3 4R100</td>
<td>F81Z-AA NON-PTO</td>
<td>F8UZ-AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F81Z-AA</td>
<td>F8UZ-BA</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>F81Z-AA</td>
<td>F8UZ-BA</td>
</tr>
<tr>
<td>E4OD</td>
<td>6.8</td>
<td>F81Z-AA</td>
<td>F8UZ-BA</td>
</tr>
<tr>
<td>1998-2000</td>
<td>4.2/4.6/5.4</td>
<td>F6TZ-C</td>
<td>F7TZ-AA</td>
</tr>
<tr>
<td>2000-2001</td>
<td>H/J/L/M/K</td>
<td>F81Z-BA PTO</td>
<td>F81Z-BA</td>
</tr>
<tr>
<td>1999-2001</td>
<td>A/B/C/D/E/F</td>
<td>F81Z-AA NON-PTO</td>
<td>F81Z-DA</td>
</tr>
</tbody>
</table>

*Replacement valve body as an assembly only
The new designed Direct Drum does not use the #8 thrust washer. There is no longer a loading of the forward clutch drum on the direct clutch drum. The Sun Shell was also replaced to accommodate this change. It now the supporting element for the Direct Drum.
Concern: 1999 F250 Heavy Duty and Super Duty F-series trucks with 5.4L or 6.8L gas engines.

Common Cause: This condition is often due to low line rise. The computer command for line rise isn’t adequate for the conditions.

Repair: Ford has issued an update computer calibration. Use the transmission tag number and calibration number to determine whether the truck requires this update.

Notice the drum flared at the top.

<table>
<thead>
<tr>
<th>Application</th>
<th>Transmission ID Tag</th>
<th>Calibration Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4L 49 State</td>
<td>MER</td>
<td>9 VZA-AF</td>
</tr>
<tr>
<td>5.4L CA</td>
<td>NUY</td>
<td>9 VZA-BJ</td>
</tr>
<tr>
<td>6.8L 49 State</td>
<td>YHH</td>
<td>9 WAA-AA</td>
</tr>
<tr>
<td></td>
<td>AEO</td>
<td>9 WAA-AC</td>
</tr>
<tr>
<td></td>
<td>BIH</td>
<td>9 WAA-AF</td>
</tr>
<tr>
<td></td>
<td>DOZ</td>
<td>9 WAA-AH</td>
</tr>
<tr>
<td></td>
<td>MCM</td>
<td>9 WAA-AI</td>
</tr>
<tr>
<td>6.8L CA</td>
<td>EAP</td>
<td>9 WAA-BC</td>
</tr>
<tr>
<td></td>
<td>FOT</td>
<td>9 WAA-BD</td>
</tr>
<tr>
<td></td>
<td>JUR</td>
<td>9 WAA-BL</td>
</tr>
<tr>
<td></td>
<td>JTY</td>
<td>9 WAA-BV</td>
</tr>
<tr>
<td></td>
<td>MFG</td>
<td>9 WAA-BY</td>
</tr>
<tr>
<td></td>
<td>NRR</td>
<td>9 WAA-BZ</td>
</tr>
</tbody>
</table>
The Low/Reverse clutch assembly can be replaced with E4OD parts. These parts include:

- Low one-way roller clutch.
- Reverse hub assembly.
- Inner race assembly.
- Low/Reverse clutch return spring.
- Reverse ring gear and hub.
- Reverse Planetary assembly.
- Clutches and steel plates
Solenoid Pack Update

In January 1998 diesel applications were changed to Pulse Width Modulated (PWM) Torque Converter Clutches from On/Off operation. The remaining Gas applications with 4R100 became modulated in the 1999 new model introduction.

A filter was added to the Solenoid bodies with PWM. These filters were installed to help keep the TCC solenoid from being contaminated.

Identifying Solenoid Bodies:

First Design
- The first design PWM solenoid body has a NATURAL top cover.
 Note: This solenoid body does not have a TCC screen!

Second Design
- The second design PWM solenoid body has a GREEN top cover and a screen for the PWM circuit. However, this solenoid body caused a 2-3 and 3-4 shift flare with marginal fluid capacity at the PWM solenoid. The PWM solenoid and PCM calibration had to be updated.
 Note: This change resulted in the third design replacement solenoid body! (Do not use the second design solenoid body)

Third Design
- The third design replacement solenoid body has an Orange top cover.
 Note: This solenoid body has a screen!

This screen is not serviceable. When replacements are necessary it will be necessary to replace the solenoid body assembly.
4R100
Solenoid Pack Update (continued)

Early PWM Natural cover

Replacement PWM Green cover

New PWM Orange cover Part number F81Z-7G391-CB
4R100

Rattle Noise from Converter Area

1998-2000 Econoline
1999-2000 Superduty F-Series
7.3L engine and 4R100 transmission
PWM (Only)

Concern: Rattle noise coming from the converter area when the converter is **not** engaged.

Common Cause: The impact between the outer lugs at the converter piston and the cover. To confirm this problem you can command the torque converter on from the computer or test it at the transmission.

1. Ground PIN #54 at the computer to fully apply the converter clutch.
2. Cycle the converter ON and OFF a few times by applying and removing the ground from pin #54.
3. If the noise goes away when the converter is applied, replace the torque converter.

Old Converter
4R100

Rattle Noise from Converter Area (continued)

Repair: Replace Torque Converter with Part# XL3Z-7902-DARM

New Converter

NOTE: Replacement converter comes with a two piece apply piston
Rattle Noise from Converter Area (continued)

Old

With sealing ring on turbine hub

New

Without sealing ring on turbine hub
New converter has a two piece apply piston.

Old

No Bushing

New

Bushing
4R100
Shift Solenoid Failures

Solenoid Operation and Failure Charts

Shift solenoid operation is the first step in diagnosing shift timing concerns. The following shift solenoid operation and failure charts will help to quickly diagnose common problems such as wrong gear starts, skipping gears and irregular shift patterns.

Operation of the Power Take Off PTO will be affected by shift solenoid B (SSB) failure. If the vehicle is equipped with a PTO it must be turned off during diagnosis. On-Board Diagnostic is not accessible when the PTO unit is in operation. SSB must be on and working correctly for the PTO to operate properly.

<table>
<thead>
<tr>
<th>TRANSMISSION RANGE SELECTOR LEVER POSITION</th>
<th>PCM COMMAND GEAR</th>
<th>SSA</th>
<th>SSB</th>
<th>TCC</th>
<th>CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/R/N</td>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>ON</td>
<td>ON</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>OFF</td>
<td>ON</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>OFF</td>
<td>OFF</td>
<td>*</td>
<td>OFF</td>
</tr>
<tr>
<td>D</td>
<td>FIRST THROUGH THIRD GEAR ONLY, SSA, SSB, TCC, SAME AS OVERDRIVE, CCS ALWAYS ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANUAL 2</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>ON</td>
</tr>
<tr>
<td>MANUAL 1</td>
<td>2</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>MANUAL 1</td>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

* PCM Controlled
Shift Solenoid Failures (continued)

Solenoid Operation and Failure Charts

<table>
<thead>
<tr>
<th>SSA ALWAYS OFF</th>
<th>SSA ALWAYS ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM GEAR COMMANDE</td>
<td>GEAR LEVER POSITION</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSB ALWAYS OFF</th>
<th>SSB ALWAYS ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM GEAR COMMANDE</td>
<td>GEAR LEVER POSITION</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>