Welcome To Today’s Presentation

Sponsored By:
Any Questions Or Comments Please Send Emails To webinars@atra.com

Any Questions That You May Have During The Webinar Please Feel Free To Text Them In At Any Time
Webinar Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 10/11</td>
<td>Lineartronic CVT</td>
<td>Introduction</td>
</tr>
<tr>
<td>Feb 24/25</td>
<td>ZF8HP</td>
<td>Introduction</td>
</tr>
<tr>
<td>March 10/11</td>
<td>DPS6</td>
<td>Introduction</td>
</tr>
<tr>
<td>March 24/25</td>
<td>Honda 6</td>
<td>Rebuild</td>
</tr>
<tr>
<td>April 7/8</td>
<td>8L90</td>
<td>Introduction</td>
</tr>
<tr>
<td>April 21/22</td>
<td>CFT30</td>
<td>Rebuild</td>
</tr>
<tr>
<td>May 5/6</td>
<td>948TE</td>
<td>Introduction</td>
</tr>
<tr>
<td>May 19/20</td>
<td>Lineartronic CVT</td>
<td>Rebuild</td>
</tr>
<tr>
<td>June 2/3</td>
<td>ZF8HP</td>
<td>Rebuild</td>
</tr>
<tr>
<td>June 23/24</td>
<td>6R140</td>
<td>Introduction</td>
</tr>
<tr>
<td>July 7/8</td>
<td>DPS6</td>
<td>Internal Operation</td>
</tr>
<tr>
<td>July 21/22</td>
<td>U860</td>
<td>Introduction and Rebuild</td>
</tr>
<tr>
<td>Aug 4/5</td>
<td>8L90</td>
<td>Internal</td>
</tr>
<tr>
<td>Aug 18/19</td>
<td>01J</td>
<td>Problems & Fixes</td>
</tr>
<tr>
<td>Sept 1/2</td>
<td>948TE</td>
<td>Internal</td>
</tr>
<tr>
<td>Sept 15/16</td>
<td>5R110W</td>
<td>Problems & Fixes</td>
</tr>
<tr>
<td>Sept 29/30</td>
<td>Lineartronic CVT</td>
<td>Problems & Fixes</td>
</tr>
<tr>
<td>Oct 13/14</td>
<td>6R140</td>
<td>Problems & Fixes</td>
</tr>
</tbody>
</table>
Pencil It In Now!

October 29 - November 1,
2015

OCTOBER

NOVEMBER

Powertrain Expo

Rio Hotel & Casino
Las Vegas, NV

your source for engineered solutions
2015 TECHNICAL SEMINAR

SCHEDULE
Registration...... 7am-8am
Seminar8am
Lunch............ 12pm-1pm

FEES
All Pricing in US Funds
ATRA Members $165
Non-Members $210
Every 4th person FREE
Onsite registration $240

HOW TO REGISTER
Phone
toll-free: (800) 428-8489
Fax your payment & registration
information to: (805) 988-6761
Online: http://members.atra.com
Mail your payment to:
ATRA Seminar Registration
2400 Latigo Avenue, Oxnard, CA 93030

LOCATIONS
March 14 - Boston, MA
March 21 - Biloxi, MS
March 28 - Coeur D’Alene, ID
March 28 - Salt Lake City, UT
April 11 - Minneapolis, MN
April 18 - St. Louis, MO
April 25 - Concord, CA
May 2 - Columbus, OH
May 2 - San Antonio, TX
May 9 - Denver CO
May 16 - Des Moines, IA
May 30 - Vancouver, BC
TBA - Tulsa, OK
August 8 - Albuquerque, NM
TBA - Portland, OR
August 22 - Atlanta, GA
August 29 - Anaheim, CA
September 12 - Billings, MT
September 19 - Chicago, IL
September 26 - Newark, NJ
November 7 - Baltimore, MD

*Expo Package includes 1 Complete Conference Registration & up to 4 nights hotel stay at the Rio Hotel & Casino. Must be present to win.
GM 8L90 Introduction

Presented by:
Mike Souza
ATRA Senior Research Technician

2015 Chevrolet Corvette
(standard equipment)

GM 8L90 Intro Webinar ©2015 ATRA. All Rights Reserved.
Available in the 2015 Chevrolet Corvette as standard equipment. As an upgrade in some full size SUV vehicles. Shortly after as standard equipment in all full size SUV vehicles.

2015 Yukon Denali / XL Denali L83 / L86 Engine RWD/4WD (upgrade)
2015 Silverado Double Cab / Crew L86 Engine RWD/4WD (standard)
Introduction

• The RPO code for the 8L90 is M5U.
• This new 8 speed transmission will be introduced in the Chevrolet Corvette, then shortly after in full size SUV vehicles.
• In the SUVs, the 8 speed is an up-level transmission option.
• The 6 speed will still be the standard option.
• The 8L90 Hydra-Matic transmission is a fully automatic, 8-speed, rear-wheel drive, electronic-controlled transmission.
• The 8 speed ratios are generated using:
 ─ 4 planetary gear sets
 ─ 2 brake clutches
 ─ 3 rotating clutches
• The three (3) rotating clutches have been located forward of the gear sets to minimize the length of oil feeds which provides for enhanced shift response.
• The 8 speed architecture utilizes a chain driven fluid pump.
Different variants of the 8L90 transmission are all based on torque capacity. The different 8 speed transmission variants use common components. The main differences primarily relate to component size and clutch capacity.

The 8 speed transmission features a case with integral bellhousing for enhanced powertrain stiffness.

A unique pump drive design allows for off-axis packaging very low in the transmission. The pump is a binary vane type which effectively allows for two pumps in the packaging size of one. The design and packaging strategy enables low parasitic losses and optimum priming capability and provides for ideal oil routing to the controls system, with the pump located in the valve body itself.

The transmission control module (TCM) is externally mounted, enabling packaging and powertrain integration flexibility.

The controller makes use of three (3) speed sensors which provide for enhanced shift response and accuracy.
Remote Off Axis Vane Type Binary Pump

At low speeds, both ports supply pressurized fluid to the transmission to meet demand.

Higher speeds require a lower displacement, and only one discharge port supplies pressurized fluid.

The fluid from the other discharge port recirculates to the suction side, reducing the losses in the system and improving overall efficiency of the transmission.

A binary pump also responds quicker to a reduction in engine speed.

The pump adjusts to changes in demand sooner than the slide on a variable displacement pump.
Remote Off Axis Vane Type Binary Pump

Chain Driven
Transmission Case

The transmission case uses an integrated bell housing for added strength in the truck and SUV versions. The Corvette transmission bolts directly to the torque tube. The rear transmission case extension is different from the Corvette and the truck/SUV versions.

The extension housing will also be different between 2WD and 4WD versions for the truck and SUVs. The transmission case has a 20 way electrical connector to attach the electrical harness, and a fill tube plug for fluid filling, if it is accessible. The transmission label that contains the serial number and transmission identification number is located on the transmission case.

Cooler line connections are also provided just in front of the shift shaft.
Transmission Case

Closed Seal
Transmission Case

Closed Seal
The planetary gear sets provide the 8 forward gear ratios and reverse.

Changing gear ratios is fully automatic and is accomplished through the use of a transmission control module (TCM).

The TCM receives and monitors various electronic sensor inputs and uses this information to shift the transmission at the optimum time.

The friction components used in the 8L90 transmission consist of 5 multiple disc clutches.

The multiple disc clutches deliver 8 forward gear ratios and one reverse gear ratio through the gear sets.

The gear sets then transfer torque and sends it to the output shaft.

The 4 gear sets are the direct/overdrive gear set, the input gear set, the reaction gear set and the output gear set.

The 5 clutches are the 1-3-5-6-7 clutch, 4-5-6-7-8 reverse clutch, 2-3-4-6-8 clutch, 1-2-7-8 brake reverse clutch and the 1-2-3-4-5 reverse brake clutch.
According to the manufacturer all the driving clutches are located in front of the planetary assemblies for a quicker fill time.
A part unique number (PUN) is located on the valve body and solenoids and a transmission unique number (TUN) is located on the case. The part numbers identify the solenoid unique performance characteristic data, which is stored in the transmission control module (TCM) as part of the TIS2 Web Service Programming System (SPS).

If you change the transmission, valve body, solenoids, or TCM during a repair, the unique performance characteristic data must be downloaded from the web server and reprogrammed into the TCM for the system to function at maximum efficiency.
Solenoid Identification

Part Unique Number (PUN)

Transmission Unique Number (TUN)
Solenoid Resistance

Although the PWM solenoids resistance is the same.

The part unique numbers (PUN) identifies each of the solenoid’s different flow rate performance characteristics.

There is no difference between the two on/off solenoids.

<table>
<thead>
<tr>
<th>Solenoid Name</th>
<th>Solenoid Type</th>
<th>Controlled Element</th>
<th>Resistance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Solenoid Valve 1</td>
<td>High Pressure Normally Closed Variable Force</td>
<td>Torque Converter Clutch</td>
<td>4.5 - 5.5 ohms</td>
</tr>
<tr>
<td>Control Solenoid Valve 2</td>
<td>High Pressure Normally Open Variable Force</td>
<td>2-3-4-6-8 Clutch</td>
<td>4.5 - 5.5 ohms</td>
</tr>
<tr>
<td>Control Solenoid Valve 3</td>
<td>High Pressure Normally Closed Variable Force</td>
<td>1-3-5-6-7 Clutch</td>
<td>4.5 - 5.5 ohms</td>
</tr>
<tr>
<td>Control Solenoid Valve 4</td>
<td>Low Pressure Normally Open Variable Force</td>
<td>4-5-6-7-8 Reverse Clutch</td>
<td>4.5 - 5.5 ohms</td>
</tr>
<tr>
<td>Control Solenoid Valve 5</td>
<td>Low Pressure Normally Open Variable Force</td>
<td>1-2-7-8 Reverse Clutch</td>
<td>4.5 - 5.5 ohms</td>
</tr>
<tr>
<td>Control Solenoid Valve 6</td>
<td>High Pressure Normally Closed Variable Force</td>
<td>1-2-3-4-5 Reverse Clutch</td>
<td>4.5 - 5.5 ohms</td>
</tr>
<tr>
<td>Control Solenoid Valve 7</td>
<td>Low Pressure Normally Open Variable Force</td>
<td>Line Pressure</td>
<td>4.5 - 5.5 ohms</td>
</tr>
<tr>
<td>Control Solenoid Valve 8</td>
<td>Normally Closed On - Off</td>
<td>Default Value</td>
<td>11.0 - 13.0 ohms</td>
</tr>
<tr>
<td>Control Solenoid Valve 9</td>
<td>Normally Closed On - Off</td>
<td>Boost Valve</td>
<td>11.0 - 13.0 ohms</td>
</tr>
</tbody>
</table>
This is a solenoid working apply chart, not a voltage apply chart along with clutch apply.

When the solenoid state is on it is performing a function whether it’s Normally High creating pressure or Normally Low dropping pressure.

Controlled by amperage from the TCM.

Solenoid & Clutch Application Chart

Working Chart Not Electrical / Failsafe is 6th Gear

<table>
<thead>
<tr>
<th>Range</th>
<th>Gear</th>
<th>4-5-6-7-8 Reverse S1 NH</th>
<th>1-2-7-8 Reverse S2 NH</th>
<th>1-2-3-4 Reverse S3 NL</th>
<th>1-3-5-6-7 S5 NL</th>
<th>2-3-4-6-8 S6 NH</th>
<th>1-2-3-4-5 Reverse BST SB</th>
<th>Default Control S9</th>
<th>1-3-5-6-7 Clutch</th>
<th>4-5-6-7-8 Reverse Clutch</th>
<th>2-3-4-6-8 Clutch</th>
<th>1-2-7-8 Reverse Clutch</th>
<th>1-2-3-4-5 Reverse Clutch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park</td>
<td>P</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Neu</td>
<td>N</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D</td>
<td>1st</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>—</td>
<td>Applied</td>
<td>—</td>
<td>—</td>
<td>Applied</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>—</td>
<td>Applied</td>
<td>—</td>
<td>—</td>
<td>Applied</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Applied</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Applied</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4th</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>—</td>
<td>Applied</td>
<td>—</td>
<td>—</td>
<td>Applied</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5th</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Applied</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6th</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Applied</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>7th</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Applied</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8th</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Applied</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* Applied with no load

No Sprag Assembly

your source for engineered solutions
General Specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>8L90</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPO Codes</td>
<td>M6U</td>
</tr>
<tr>
<td>Production Location</td>
<td>Toledo, OH (USA)</td>
</tr>
<tr>
<td>Transmission Drive</td>
<td>Rear Wheel Drive</td>
</tr>
<tr>
<td>1st Gear Ratio</td>
<td>4.560</td>
</tr>
<tr>
<td>2nd Gear Ratio</td>
<td>2.971</td>
</tr>
<tr>
<td>3rd Gear Ratio</td>
<td>2.075</td>
</tr>
<tr>
<td>4th Gear Ratio</td>
<td>1.688</td>
</tr>
<tr>
<td>5th Gear Ratio</td>
<td>1.270</td>
</tr>
<tr>
<td>6th Gear Ratio</td>
<td>1.000</td>
</tr>
<tr>
<td>7th Gear Ratio</td>
<td>0.845</td>
</tr>
<tr>
<td>8th Gear Ratio</td>
<td>0.652</td>
</tr>
<tr>
<td>Reverse</td>
<td>3.818</td>
</tr>
<tr>
<td>Torque Converter Size – Diameter of Torque Converter Turbine</td>
<td>258 mm</td>
</tr>
<tr>
<td>Pressure Taps</td>
<td>Line Pressure</td>
</tr>
<tr>
<td>Transmission Fluid Type</td>
<td>DEXRON® HP</td>
</tr>
<tr>
<td>Transmission Type: 8</td>
<td>Eight Forward Gears</td>
</tr>
<tr>
<td>Transmission Type: L</td>
<td>Longitude Mount</td>
</tr>
<tr>
<td>Transmission Type: 90</td>
<td>Product Series</td>
</tr>
<tr>
<td>Position Quadrant</td>
<td>P, R, N, D, M</td>
</tr>
<tr>
<td>Case Material</td>
<td>Die Cast Aluminum</td>
</tr>
<tr>
<td>Transmission Net Weight (Approximate)</td>
<td>95 kg (210 lb)</td>
</tr>
<tr>
<td>Maximum Trailer Towing Capacity</td>
<td>Refer to applicable owner’s manual</td>
</tr>
</tbody>
</table>
Transmission Service Fast Learn

- Transmission service fast learn is a procedure that is performed after any 8L90 transmission repair.

- This procedure performs a series of tests which allow the transmission control module (TCM) to learn individual clutch apply pressures.

- The learn pressure values are used by the TCM for clutch control and timing of shifts.

- The scan tool is used to perform the transmission service fast learn procedure.

- Service fast learn must be performed when any of the following repairs have been made to the transmission:
 - Pressure regulating solenoid replacement
 - Valve body repair or replacement
 - Any service/repair in response to a shift quality concern.

- If service fast learn is not performed after programming the TCM, longer than expected transmission adapt learn values could cause poor shift quality.

- This procedure must also be performed for any internal transmission service, repair, overhaul or replacement, torque converter replacement, TCM replacement, or transmission assembly replacement.
The TCM monitors the A/T input speed sensor, intermediate speed sensor and the A/T output speed sensor during commanded shifts to determine if a shift is occurring too fast (harsh) or too slow (soft) and adjusts the corresponding PC solenoid signal to maintain the set shift feel.

How to Adapt Your Transmission

The Hydra-Matic 8-Speed RWD transmission adaptive learn process can be accomplished by driving in the following manner.

Execute the steps provided in the following pages with the vehicle warmed up on a smooth level road.

The driver may observe a brief pulse behavior or firm shift feel while the transmission is optimizing the clutch learn characteristics.

Perform a test drive and note any soft or harsh shifts.

To improve these complaint shifts, locate the clutches that need to be learned in the following table.
Note: During low vehicle speeds with no accelerator pedal input downshift will most likely be a 3-1 shift.

<table>
<thead>
<tr>
<th>To Correct The Shift Feel</th>
<th>Learn These Clutches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applying Clutch</td>
</tr>
<tr>
<td>1–2</td>
<td>C4</td>
</tr>
<tr>
<td>2–3</td>
<td>C3</td>
</tr>
<tr>
<td>3–4</td>
<td>C5</td>
</tr>
<tr>
<td>4–5</td>
<td>C3</td>
</tr>
<tr>
<td>5–6</td>
<td>C4</td>
</tr>
<tr>
<td>6–7</td>
<td>C1</td>
</tr>
<tr>
<td>7–8</td>
<td>C4</td>
</tr>
<tr>
<td>3–1</td>
<td>C1</td>
</tr>
<tr>
<td>2–1</td>
<td>C3</td>
</tr>
<tr>
<td>N-D</td>
<td>C3 – Perform garage shift adaptive learning</td>
</tr>
<tr>
<td>N-R</td>
<td>C5 – Perform garage shift adaptive learning</td>
</tr>
<tr>
<td>Power Downshifts</td>
<td>Just perform the shifts and they will adapt</td>
</tr>
</tbody>
</table>

Perform the required learning procedure for each clutch listed on the following pages.
Clutch Learning Procedures

To Learn **C1**: (1-2-7-8-Reverse Clutch))
Shift the transmission into 6th gear with the PRNDM in the M position. Obtain an engine speed between 1000 and 1750 rpm. Maintain this condition for a total of about 5 miles (8 km).

Cruise control may be used and has been found to result in faster learning of the clutch values.

Try the complaint shift to see if it has improved to an acceptable level. If not, continue with operation in this speed range until the complaint shift improves.

To Learn **C2**: (1-2-3-4-5-Reverse Clutch)
Note: Perform abbreviated coast down shift adaptive learning procedure listed below to enable learn mode.

Shift the transmission into 8th gear with the PRNDM in the M position. Obtain an engine speed between 1000 and 1750 rpm. Maintain this condition for a total of about 5 miles (8 km).

Cruise control may be used and has been found to result in faster learning of the clutch values.

Try the complaint shift to see if it has improved to an acceptable level. If not, continue with operation in this speed range until the complaint shift improves.
Clutch Learning Procedures

To Learn C3: (1-3-5-6-7 Clutch)
Note: Perform abbreviated coast down shift adaptive learning procedure listed below to enable learn mode.

Shift the transmission into 4th gear with the PRNDM in the M position. Start a slow acceleration at about 1000 rpm and maintain the slow acceleration until you reach about 1650 rpm. Once you reach 1650 rpm, go back down to 1000 rpm and repeat the slow acceleration up to 1650 rpm.

Repeat this a few times and retry the complaint shift to see if it has improved to an acceptable level. If it has not, continue this slow acceleration procedure until the complaint shift improves.

To Learn C4: (2-3-4-6-8 Clutch)
Shift the transmission into 7th gear with the PRNDM in the M position. Obtain an engine speed between 1000 and 1750 rpm.

Maintain this condition for a total of about 5 miles (8 km).

Cruise control may be used and has been found to result in faster learning of the clutch values.

Try the complaint shift to see if it has improved to an acceptable level. If not, continue with operation in this speed range until the complaint shift improves.
To Learn C5: (4-5-6-7-8 Reverse Clutch)
Shift the transmission into 3rd gear with the PRNDM in the M position.
Start a slow acceleration at about 1000 rpm and maintain the slow acceleration until you reach about 2500 rpm. Once you reach 2500 rpm, go back down to 1000 rpm and repeat the slow acceleration up to 2500 rpm.
Repeat this a few times and retry the complaint shift to see if it has improved to an acceptable level. If it has not, continue this slow acceleration procedure until the complaint shift improves.

Abbreviated Coast Down Shift Adaptive Learning:
Lightly accelerate to 65 mph (105 km/h) and coast to 25 mph (40 km/h) (light braking can be applied). Repeat 10 times.
This procedure will enable clutch apply adaptive learning for the C2 and C3.
Note: This only needs to be performed once per drive cycle to enable the adaptive learning for all subsequent C2 and C3 learning maneuvers.
Failure to perform this procedure will result in no learning of these clutches.
Clutch Learning Procedures

Power Downshift Adaptive Learning:
Starting with the vehicle operation in 8th gear, slowly apply pressure to the accelerator pedal until downshift occurs.

Repeat as necessary in each gear.

This procedure will learn the off-going clutch adapts for desired power downshift control.

Garage Shift Adaptive Learning:
Perform abbreviated coast down shift adaptive learning procedure.

Then with the vehicle at a stop, hold foot on brake pedal and move the shifter from Neutral to Drive and Neutral to Reverse.

Repeat as necessary until desired shift quality is achieved.

This procedure will learn the C13567 (C3-Drive) and C45678R (C5 – Reverse) oncoming clutch adapts.
There are three (3) speed sensors for the 8L90:

- Input Speed
- Intermediate Speed
- Output speed

Torque-to-yield bolts are used to retain the speed sensors. If the bolts are removed, discard and replace them with new ones.

All three sensors are part of a wiring harness that connects to the main harness going to the pass-through connector.

NOTE: Torque-to-yield bolts need to be broken loose with a hand tool first before removal with air tools.

All 3 Speed Sensors are attached to a single harness separate from the main harness.
Speed Sensor Locations

- **Case Seal**
- **Input**
- **Intermediate**
- **Output**
- **Main Harness Connector**
- **Torque To Yield Bolts**
Pump Assembly

To gain access to the driven pump sprocket, remove the transmission fluid baffle that covers the driven pump sprocket.

The retaining bolts that secure the baffle to the transmission are torque-to-yield inverted Torx head bolts. The bolts must be discarded and replaced with new ones when reinstalling the fluid baffle back into the transmission.

Remove the Torx bolts with the valve body Torx Plus socket. This is the same tool that is used for the 6-speed transmission.
Removing Torque To Yield Bolts
Pump Assembly

The pump is driven from the pump drive sprocket which is driven directly from the torque converter.

The pump driven sprocket is directly attached to the fluid pump. A drive chain connects the sprocket and the pump.

Pay close attention to the position of the locking tab when installing the pump driven sprocket onto the pump shaft.

Make sure the sprocket locking tab is correctly secured to the pump shaft.

Drive gear can go either way
Bend Tab away from Hole Pull Up

Gear is Very Loose
The hydraulic system consists of an off-axis chain-driven binary vane-type pump. The pump is located in the upper valve body.

Note: The fluid pump seal and the fluid pump gaskets are not reusable.

A new gasket and new seal must be installed when the fluid pump has been removed.

The fluid pump uses a fluid passage sleeve. The sleeve is used to direct fluid into the suction of the pump more directly to avoid cavitation within the pump. The sleeve needs to be installing correctly into the pump housing cavity.

Note: The sleeve can only be installed one way.
Remote Off Axis Vane Type Binary Pump

Make sure to align the seal correctly
The Internal Mode Switch (IMS) contains 6 separate switches in one assembly:

— One mechanical switch circuit is for the Park/Neutral position switch which is used for engine starting.
— The other 5 electronic switches are called the transmission range switches and are used to indicate the gear position the vehicle operator has selected.

The IMS switch assembly is mounted on the interior left side of the transmission case.
Internal Mode Switch

- **Remove Roll Pin & Shaft**
- **Linkage Rod & Spring**
- **Park Rod**
Warning!

You Must Pull Up On This Tab First

Then Press In Here To Release

To Prevent Breaking The Locking Tab
The IMS indicates to the TCM which gear position the vehicle operator has selected. The IMS consists of 5 separate hall-effect switches. Each switch is supplied a 9 volt reference circuit, and a signal circuit from the TCM.

The signal circuit for each gear selector position will have either a voltage reading of 0.70 to 0.96 Volts indicating ON or 1.68 to 2.38 Volts indicating OFF.

The voltage values on each IMS circuit will change and are dependent on the position of the gear selector. The state of each IMS A/B/C/P/S circuit is displayed on the scan tool.

<table>
<thead>
<tr>
<th>Shift Lever Position</th>
<th>Internal Mode Switch A Circuit</th>
<th>Internal Mode Switch B Circuit</th>
<th>Internal Mode Switch C Circuit</th>
<th>Internal Mode Switch P Circuit</th>
<th>Internal Mode Switch S Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park</td>
<td>1.68 - 2.38 V</td>
<td>0.70 - 0.96 V</td>
<td>1.68 - 2.38 V</td>
<td>0.70 - 0.96 V</td>
<td>0.70 - 0.96 V</td>
</tr>
<tr>
<td>Reverse</td>
<td>0.70 - 0.96 V</td>
<td>1.68 - 2.38 V</td>
<td>1.68 - 2.38 V</td>
<td>0.70 - 0.96 V</td>
<td>1.68 - 2.38 V</td>
</tr>
<tr>
<td>Neutral</td>
<td>0.70 - 0.96 V</td>
<td>1.68 - 2.38 V</td>
<td>0.70 - 0.96 V</td>
<td>1.68 - 2.38 V</td>
<td>0.70 - 0.96 V</td>
</tr>
<tr>
<td>Drive</td>
<td>1.68 - 2.38 V</td>
<td>0.70 - 0.96 V</td>
<td>0.70 - 0.96 V</td>
<td>1.68 - 2.38 V</td>
<td>1.68 - 2.38 V</td>
</tr>
<tr>
<td>Manual Mode</td>
<td>1.68 - 2.38 V</td>
<td>0.70 - 0.96 V</td>
<td>0.70 - 0.96 V</td>
<td>1.68 - 2.38 V</td>
<td>0.70 - 0.96 V</td>
</tr>
</tbody>
</table>
Transmission Fluid Temperature Sensor

The transmission fluid temperature sensor is integral to the internal harness.
Transmission Fluid Temperature Sensor

The transmission fluid temperature sensor is a thermistor type sensor. The warmer the sensor becomes the lower the resistance drops.
Internal Harness

You must remove the internal harness before removing the valve body. The internal harness has a cam style lever lock.

Locked

Unlocked
Valve Body

There are eleven bolts that secure the valve body to the case. Seven long and four short bolts.
There are seven control solenoid signal accumulators & springs located in the lower valve body.

Signal accumulators are used to dampen the signal fluid apply from each pressure control solenoid before fluid gets to the control valve.

Spring & piston dimensions are all the same

Valve Body
Valve Body

One large 1-3-5-6-7 clutch accumulator
In the main valve body.

2.40”X.908”X.139”
There are ten check balls, nine small one large
Valve Body

Top Main Valve Body

.250”

5 small
Clutch selective snap rings must be oriented properly in rotating housing. Important: The uncut splines are 180° apart (exactly like the 6L80).

When installing the 4-5-6-7-8 Reverse clutch plates and the 2-3-4-6-8 clutch plates into the housing, the selective snap rings must be oriented properly within the housing. A blind spline is used to orientate each of the snap rings. The opening of the snap ring must be around the blind spline. Otherwise, the snap ring will not be able to be properly seated in its groove.
4-5-6-7-8 Clutch Drum Splines

2-3-4-6-8 Apply Plate

2-3-4-6-8 Piston
Fluid Level & Condition Check

This procedure checks both the transmission fluid level and the condition of the fluid.

Note: The 8L90 transmission is NOT equipped with a fill tube and dipstick. A tube attached to the inside of the transmission fluid pan, called a stand pipe, is used to set the fluid level.

Caution: The transmission fluid level must be checked when the transmission fluid temperature (TFT) is between 35–45°C (95–113°F) on scan tool data. If the TFT is not within this range, operate the vehicle or allow the fluid to cool as required.

Setting the fluid level with a TFT outside this range will result in either an under or over-filled transmission. TFT>45°C = under-filled, TFT<35°C=over-filled. An under-filled transmission will cause premature component wear or damage.

An over-filled transmission will cause fluid to discharge out the vent tube, fluid foaming, or pump cavitation.
Fluid Level & Condition Check

1. Observe the Transmission Fluid Temperature (TFT) using the Driver Information Center (DIC), or a scan tool.
2. Start and idle the engine.
3. Depress the brake pedal and move the shift lever through each gear range.
 - Pause for at least 3 seconds in each range.
4. Move the shift lever back to PARK.
5. Ensure the engine RPM is low at 500 to 800 RPM.
6. Allow the engine to idle for at least 1 minute.
7. Raise the vehicle on a hoist.

The vehicle must be level, with the engine running and the shift lever in the PARK range.

Caution: THE ENGINE MUST BE RUNNING when the trans oil level check plug is removed or excessive fluid loss will occur, resulting in an under-filled condition. An under-filled transmission will cause premature component wear or damage.

Note: Continue to monitor the TFT. If the TFT is not within the specified values, reinstall the trans oil level check plug and repeat the previous steps.
Fluid Level & Condition Check

Without the Factory Service Tool

1. Based on accessibility, transmission fluid may be added through the fluid fill tube plug assembly (1) hole or through the oil level check plug (2) hole in the bottom of the transmission fluid pan.

2. Clean around the fluid fill tube plug (1).

3. Unlock the fill tube plug by lifting the plunger. Once the plunger is lifted, remove the entire plug assembly (1).

Use Dexron HP Fluid
Fluid Level & Condition Check

Make Sure To Pull Tab Up Before Attempting To Remove Plug
Fluid Level & Condition Check

With the Factory Service Tool

1. Remove the oil level check plug.
2. Install the DT-51190 fluid fill pan adapter (1) and, if necessary, one adapter from the DT 45096-30 cooler flush adapters (2).
3. Determine the approximate amount of fluid needed to fill the transmission, based on the repair performed.

Refer to Approximate Fluid Capacities. To avoid an under-fill condition, slightly overfill the transmission, and then allow the extra fluid to drain out through the oil level check plug during the transmission fluid level and condition check procedure.
Fluid Capacities Chevrolet Corvette

<table>
<thead>
<tr>
<th>Approximate Fluid Capacities Application</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan Removal and Filter Replacement;</td>
<td>Metric</td>
</tr>
<tr>
<td>Approximate Capacity</td>
<td>3.25 liters</td>
</tr>
<tr>
<td>Overhaul;</td>
<td>English</td>
</tr>
<tr>
<td>Approximate Capacity</td>
<td>3.43 quarts</td>
</tr>
<tr>
<td>(Transmission Volume Only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.7 liters</td>
</tr>
<tr>
<td></td>
<td>11.30 quarts</td>
</tr>
<tr>
<td>Complete Trans System;</td>
<td></td>
</tr>
<tr>
<td>Approximate Capacity</td>
<td></td>
</tr>
<tr>
<td>(Including Cooler Volume) with LT1 Engine</td>
<td>11.1 liters</td>
</tr>
<tr>
<td></td>
<td>11.73 quarts</td>
</tr>
<tr>
<td>Complete Trans System;</td>
<td></td>
</tr>
<tr>
<td>Approximate Capacity</td>
<td></td>
</tr>
<tr>
<td>(Including Cooler Volume) with LT4 Engine</td>
<td>11.2 liters</td>
</tr>
<tr>
<td></td>
<td>11.83 quarts</td>
</tr>
<tr>
<td>Approximate Fluid Capacities Application</td>
<td>Specifications</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Pan Removal and Filter Replacement; Approximate Capacity</td>
<td>Metric</td>
</tr>
<tr>
<td></td>
<td>English</td>
</tr>
<tr>
<td>Overhaul; Approximate Capacity (Transmission Volume Only)</td>
<td>3.3 liters</td>
</tr>
<tr>
<td></td>
<td>3.49 quarts</td>
</tr>
<tr>
<td>Complete Trans System; Approximate Capacity (Including Cooler Volume) with LT1 Engine</td>
<td>10.3 liters</td>
</tr>
<tr>
<td></td>
<td>10.88 quarts</td>
</tr>
<tr>
<td></td>
<td>10.8 liters</td>
</tr>
<tr>
<td></td>
<td>11.41 quarts</td>
</tr>
</tbody>
</table>
Line Pressure Check

Warning: Keep the brakes applied at all times in order to prevent unexpected vehicle motion. Personal injury may result if the vehicle moves unexpectedly.

1. Install a scan tool.
2. Start the engine.
3. Inspect the transmission for the proper fluid level. Refer to Transmission Fluid Level and Condition Check.
4. Use the scan tool to inspect for any active or stored diagnostic trouble codes.
5. Inspect the manual linkage at the transmission for proper function.
6. Turn the engine OFF.

Note: You may need to remove or disconnect components in order to gain access to the transmission case extension hole plug.

7. Remove the case extension hole plug.
8. Install the GE-21867 pressure gauge.
9. Access the Scan Tool Transmission Output Controls for the Line PC Solenoid.
Note: the threaded port on the left is for the 1-2-3-4-5-R Brake Clutch.

Special thanks to Robert Bateman at Seal Aftermarket for all his help compiling this information & pictures.
Line Pressure Check

10. Start the engine.

Note: In order to achieve accurate line pressure readings, the following procedure should be performed at least three times. The values displayed on the scan tool screen will not match the actual pressures indicated on the pressure gauge.

Control the Line PC Solenoid in PARK or NEUTRAL with the engine speed at approximately 1500 RPM and the TFT between 35–55°C (95–131°F). This protects the clutches from extreme high or low line pressures and ensures a consistent pump capacity.

11. Use the scan tool to increase and decrease line pressure, allowing the pressure to stabilize between increments.

12. Compare the pressure readings on the gauge with the table shown on next page.

13. If the pressure readings on the gauge are erratic, or are more than 10% greater or less than the range specified in the table below, refer to Fluid Pressure High or Low.

14. Turn the engine OFF.

15. Remove the GE-21867 pressure gauge. Caution: Refer to Fastener Caution.

16. Install the case extension hole plug (1). Tighten the plug to 97 lb. in.
Line Pressure Check

<table>
<thead>
<tr>
<th>Scan Tool Line PC Solenoid Commanded State (Kpa)</th>
<th>Approximate Line Pressure Shown on Pressure Gauge @ 1500 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>KPa</td>
</tr>
<tr>
<td>310 - 550</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>655 - 900</td>
</tr>
<tr>
<td>400</td>
<td>1100 - 1310</td>
</tr>
<tr>
<td>600</td>
<td>1520 - 1725</td>
</tr>
<tr>
<td>800</td>
<td>1860 - 2070</td>
</tr>
<tr>
<td>1000</td>
<td>1860 - 2070</td>
</tr>
<tr>
<td>1200</td>
<td>1860 - 2070</td>
</tr>
<tr>
<td>1400</td>
<td>1860 - 2070</td>
</tr>
<tr>
<td>1600</td>
<td>1860 - 2070</td>
</tr>
<tr>
<td>1800</td>
<td>1860 - 2070</td>
</tr>
<tr>
<td>2000</td>
<td>1860 - 2070</td>
</tr>
</tbody>
</table>
Today’s Presentation
Sponsored By:

Any Questions?
Thank You For Attending